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Abstract 

All terrain cranes often work in construction sites. Blind spots, limited information and high mental workload are problems 

encountered by crane operators. A top-view camera mounted on the boom head offers a valuable perspective on the workspace that 

can help eliminate blind spots and provide the basis for assisting operation. In this study, a visual 2D map of a crane workspace is 

generated from images captured by a top-view camera. Various types of information can be overlaid on this visual to assist the 

operator, such as recording the operation and projecting the boom head’s expected path through the workspace. Herein, the process 

of generating a visual map by stitching and locating the boom head trajectory in that visual map is described. Preliminary proof-of-

concept tests show that a precise map and projected trajectories can be generated via image-processing techniques that discriminate 

foreground objects from the scene below the crane. These results show a way to help the operator make more precise operation 

easily and reduce the operator’s mental workload. 
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1. Introduction

All-terrain cranes are widely used in construction, transportation

and other industries due to their good mobility and capacity [1]. Fig. 

1 shows an all-terrain crane in operation. A load is suspended from 

the boom and transported. 

The operators of all-terrain cranes face a constantly changing 

workspace. The chief dangers to crane operators are a congested 

working environment, neglect of hidden dangers, and a lack of 

information for decision making especially for the operators with 

little working experience. Oscillation of the suspended load can also 

present a challenge to crane operators. Many studies have addressed 

methods for reducing oscillation with the control theory for more 

precise lifting [2-4] and have mostly focused on structural features 

of the crane itself. Lifting path planning is also a promising way to 

improve the precision and efficiency of crane operation [5]. Safety 

and precision can be improved with a careful consideration of the 

workspace. Thus, accurate 3D information about the environment is 

required. Precise scanning of the environment and data processing 

Fig.1 A crane in operation. A load is suspended to the 
boom and transported. A top view camera is also 

suspended at the top of the boom to survey the 

working environment. 
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tend to be time consuming and cost a lot. One lab, for example used data from crane sensors to roughly examine the 

working environment for path planning [5].  

In this study, the crane operator’s limited visibility and insufficient information about the workspace are the primary 

concerns. As shown in Fig. 2. (a), a top-view camera is mounted on the boom head that moves over the workspace 

along with the boom. Bird’s-eye view images can be captured using the top-view camera. With several images captured 

from the top-view camera, a wide range of the workspace can be represented by stitching and rendering these images, 

as shown in Fig. 2. (b). The stitched top-view camera image can provide a rich range of information to the operator. 

Herein, the stitched wide-range image is referred to as the workspace map. A variety of assistance applications of the 

workspace map can be considered. An optimal path to transfer a load can be displayed on the workspace map to aid 

the operator. Information, such as the position of the boom head and a 2D projection of the lifting path, can also be 

included in the workspace map, along with other representations that researchers may devise in the future. 

2. Foreground detection and mask generation

To generate a clear overall workspace map, the workspace must be imaged beforehand. This pre-shooting process 

requires the following conditions, which are diagrammed in Fig. 3. 

 The top-view camera is located at the top of the boom at a sufficient height to cover a wide area of the workspace.

 The optical axis of camera should be pointed vertically at the ground.

 While taking the images, the top-view camera rotates with the boom’s rotation only. If an extension of the boom

is necessary, the height of the top-view camera should be kept as constant as possible to make images captured

having a close scale.

 Images captured with the top-view camera include background and foreground objects. The background is the

ground and objects resting on it. The foreground includes objects that are hung to the boom and move along with

it, such as a hook, a wire, and a swinging load. During the pre-shooting process, the foreground should be

removed as much as possible as they must not show up in the workspace map as ghosts. For this reason, during

the pre-shooting, winding up the cable and detaching the load are recommended. But it is impossible to exclude

them completely. We need some means to detect the foreground.

(a) Top-view camera surveying workspace (b) Stitching to generate a workspace map

Fig. 2. (a) A top view camera suspended from the boom head continuously capturing images shown in yellow rectangles of the workspace. 

(b) Image-stitching process to stitch these images to produce a wide-range image of the workspace.

Fig. 3. Conditions of pre-shooting of the background images 
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Under these assumptions, the images captured with the top-view camera can be composed using panoramic stitching 

[6]. Fig. 4 shows typical images captured by the top-view camera under the conditions mentioned above. These images 

are stitched together to generate a workspace map that covers the whole background over which the crane has gone 

through. However, even under the conditions mentioned above, these images still often contain such foreground objects 

as a boom head and a hook. Simply stitching these images will cause ghosts of these foreground objects to appear in 

the final stitched workspace map. For example, in Fig. 4., stitching the workspace map directly from images (a) and 

(b) captured by the top-view camera yields a ghost in the resulting image (c). 

To generate a clean workspace map, it is better to generate a mask to eliminate the foreground objects and prevent 

ghosts appearing in the reference map. 

2.1. Motion segmentation with moving camera 

We should remove the foreground objects by masking them with a mask covering them precisely. It is necessary to 

discriminate the background and foreground objects in the images. One method to distinguish them is by the difference 

of their motion. This problem is known as motion segmentation with a moving camera [7]. 

Serajeh has proposed a method for this problem based on epipolar geometry and dense optical flow [8]. That method 

is intended to extract moving objects from images captured with a hand-held moving camera. This paper considers the 

addressing of this problem using such a structure from motion (SFM) technique. First, with RANSAC algorithm, the 

epipolar geometry between two images is estimated to calculate the fundamental matrix. Second, the dense optical flow 

is calculated to find the corresponding point in the second image for every pixel in the first image. Then the 

corresponding points in the second image that keep a significant distance to the epipolar lines are detected as moving 

objects in the scene. This process is applicable to a wide range of cases. 

   
                  (a)  The first image taken by the top-view camera                                 (b) The second image taken by the-top view camera 

 
(c) Stitching result 

Fig. 4. (a)(b) Typical top view camera images contain foreground object (a hook) enclosed with dotted red lines the background. (c) Stitched 

image directly using images (a) and (b) has ghost of the hook in the region enclosed by red lines. 

 

Foreground 

Foreground 

Background Background 

Ghost 
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Under some conditions, however, the SFM technique will not yield satisfactory results. One extreme condition is if 

the image planes of two camera position while capturing is parallel to each other. The epipolar lines on both images 

will be parallel. If the foreground objects are moving on these epipolar lines, all the foreground objects will be on 

epipolar lines, making the measurement of epipolar distances impossible. This extreme condition happens rarely 

because it requires the two image planes parallel to each other and the foreground objects moving on the epipolar lines. 

Another example is that in which the movement of a moving object is complicated with both translational and rotational 

movements. In this case, some points on the moving object may lie on epipolar lines of the second image while the rest 

do not. Then, part of the moving objects can be detected in the first image. Unfortunately, this condition always happens 

for the images captured by the top-view camera of crane. 

2.2. Proposed method 

From one image to another image captured with the top-view camera, foreground objects will always show a 

complicated movement because of the crane hook’s oscillation. Because of this complicated movement, only parts of 

the foreground object will lie on epipolar lines from the perspective of the second image, so the foreground cannot be 

detected in full. 

One of this article’s main contributions is to make up for this shortcoming in epipolar geometry by separating 

foreground and background objects based on a combination of dense optical flow and homography. This method 

computes the relatively subtle trajectory of the background as represented in homography and compares that motion 

with the dense optical flow between the images. 

Homography represents a linear transformation between two images. The optical flow of the background should be 

consistent with the homography. However, the optical flow of foreground objects will not be consistent with the 

homography between the images. 

To illustrate the difference of foreground and background optical flows’ matching with homography, a simple 

diagram of the proposed method appears in Fig. 5(a). Both optical flow and homography are representations of pixels’ 

movement from one image to another. In Fig. 5(a), optical flow is represented as the movement from red points to blue 

points. And homography is the movement from red points to green points. For background, the movements of red 

points to blue points and red points to green points are the same, i.e., the optical flow is consistent with the homography. 

However, for the foreground, movements of red points to blue points and red points to green points are not the same, 

i.e., the optical flow is not consistent with the homography. If and only if pixels of the foreground have the same 

movement with the background, detection of these pixels will fail. 

Fig. 5. (b) shows a test on images captured with the top-view camera of the proposed method. Fig. 5. (b) shows a 

test on images captured with the top-view camera of the proposed method. As can be seen, the foreground is a blue 

hook. The red points are SIFT (scale invariant feature transformation) features [9]. The homography estimated from 

the matched features of the two images is represented as the movement from red points to green points. The dense 

optical flow computed with flownet2 [10] returns the pixel movements from the red points to blue points. Just as 

mentioned above, in the background, these two movements match. On the other hand, in the foreground, the 

homography and optical flow of foreground objects are not consistent. The result of foreground-object detection is 

shown in Fig. 5. (c), and comes from identifying the points for which optical flow and homography do not match. Fig. 

5. (d) overlaps the binarized foreground mask in Fig. 5. (c) onto the image that will be used in stitching. 
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3. Workspace map generation with image stitching 

The image-stitching problem is well understood. Image alignment and stitching through feature-based matching to 

estimate a homography are the most important steps. Fig. 6 shows the process of stitching two images into one 

panoramic image. 

The first step is to find robust features such as SIFT features [9], KAZE features [11] in the two images. Here, SIFT 

features are chosen because their good scale invariance, rotation invariance and illumination invariance. As shown in 

Fig. 6. (a) and (b), SIFT features are extracted from each image. The second step is the estimation of the homography 

by matching the SIFT features detected the first step. To estimate the homography with the matched results robustly, 

the RANSAC (random sample consensus) algorithm is implemented [12], which robustly identifies inliers of the 

matched features and estimates the homography with high precision. Fig. 6. (c) shows the result of RANSAC inliers. 

After the estimation of homography H from the matched features between the two images, the homography H is 

used to warp the first image with projective geometry. Coordinates in the image to be warped are represented as 

𝑃𝑖(𝑥𝑖 , 𝑦𝑖 , 1). The corresponding point in the second image is 𝑃𝑖
′(𝑥𝑖

′, 𝑦𝑖
′, 1). 𝑃𝑖

′ can be easily obtained with equation 

𝑤𝑖𝑃𝑖
′ = 𝐻𝑃𝑖

𝑇 , where 𝑤𝑖  is a scale parameter and 𝐻 is a 3 × 3 matrix representing the homography. So all pixels in the 

first image find their corresponding point in the second image. Fig. 6 (d) shows the result after aligning the first image 

to the second image. 

Once the images are aligned, they simply need to be blended together. Multiband blending is used for this process 

because of its good performance on many examples of image stitching [13]. Fig. 6. (e) shows the blended result of Fig 

5. (c) using masks detected using the method proposed in section 2. To make the foreground mask more reliable, 

morphological dilation is applied [14].  

       
(a) Principle of proposed method                                                                     (b) Movements comparison 

       
(c) Detected foreground mask of our method                                                 (d) Comparison of binarized mask and image 

Fig. 5. (a) A principle diagram of the proposed method to detect foreground by examine of the distance from the blue point to the green point. 

(b) A test result of the method on two images captured by the top-view camera showing sparse optical flow and homography. (c) Detection of 

foreground by comparing the difference between the dense optical flow and homography. (d) Comparison of binarized mask with the image. 
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4. Experiments with application of path location display

The methods described above were tested with prototype software to prove that the concept is feasible. The input 

is a video 𝑉𝑝𝑟𝑒 recorded in the pre-shooting under the conditions described in section 2. 𝑉𝑝𝑟𝑒 is a sequence of images

from which blurred frames are excluded with a simple filter. Then several key frames for 𝑉𝑝𝑟𝑒  are selected

automatically by considering the overlap ratio. A reasonable overlap ratio could ensure that there are enough features 

existing in the overlapped region. This could ensure the homography between tow images being estimated successfully. 

On the other hand, the overlap ratio can ensure that stitching one image to another with a significant non-overlapped 

area. The selected key frames are noted 𝑘0, 𝑘1, ⋯ , 𝑘𝑁. The generation of the workspace map is made by the following

two steps. 

The first step is to compute a mask for each key frame. For each of the other key frames 𝑘𝑖, a foreground mask

should be detected by computing the homography vectors 𝒗homo(𝒑) and optical flow vectors 𝒗opt(𝒑) for all the pixels

𝒑 of 𝑘𝑖 [10]. For this purpose, one support frame 𝑠𝑖 was chosen for computing the homography and optical flow. The

support frame 𝑠𝑖 were chosen from a set of 20 frames near 𝑘𝑖 in V𝑝𝑟𝑒 one by one to generate an optimal mask. This

selection was done manually for the experiment in this article but can be automated in the future. Only three key frames 

were chosen from 𝑉𝑝𝑟𝑒 for these preliminary tests, which was not difficult to perform manually. From 𝑘𝑖 to 𝑠𝑖, for all

(a) SIFT features in the first image (b) SIFT features in the second image

(c) Matched features of RANSAC inliers

(d) Aligned result according to homography (e) Stitching result 

Fig. 6. (a)(b) SIFT features are detected from both images. (c) RANSAC inliers are extracted from the matched SIFT features. 

Homography is estimated with these RANSAC inliers. (d)With the applying of the homography estimated in (c), the first image is warped and 

aligned with the second image. (e) The result of stitching by applying multiband blending on (d). 
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the pixels 𝒑, 𝒗homo(𝒑) is computed by the homography. The homography 𝐻 is a mapping from the key frame 𝑘𝑖 to 𝑠𝑖, 

that is, all the pixels 𝒑 of 𝑘𝑖 is mapped to their corresponding locations 𝐻(𝒑) on 𝑠i. Thus 𝒗homo(𝒑) can be computed 

by 𝒗homo(𝒑) = 𝒑 − 𝐻(𝒑). For 𝒗opt(𝒑), it can be directly estimated with flownet2[10]. Then the difference D between 

𝒗homo(𝒑) and 𝒗opt(𝒑) for all the pixels 𝒑 of 𝑘𝑖 can be computed with 𝐷 = ‖𝒗homo(𝒑) − 𝒗opt(𝒑)‖. The foreground 

pixels 𝒑f and the background pixels 𝒑b vary a lot in the value of 𝐷. Thus, by filtering with a threshold, the foreground 

pixels 𝒑f can be picked out as the foreground mask 𝑚𝑖 with a binarization process. 

The second step is to stitch the key frames to form the workspace map. First the base key frame 𝑘𝑏𝑎𝑠𝑒 is chosen, 

and is usually the image lying near the center of the workspace. For each key frame 𝑘𝑖, its homography 𝐻𝑖  to 𝑘𝑏𝑎𝑠𝑒 is 

computed through the matched feature points in the region they share. The homography is a mapping transforming key 

frame 𝑘𝑖 to 𝑘𝑏𝑎𝑠𝑒  to form the aligned images. With multiband blending, these aligned images can then form the stitched 

workspace map [13]. However, the workspace may be too large for 𝑘𝑏𝑎𝑠𝑒  and 𝑘𝑖  to share a common region. The 

manual selection of the key frames from 𝑉𝑝𝑟𝑒  is constrained in that the near key frames must have a reasonable 

overlapping ration for the homography between two key frames can be calculated. If this condition holds, the 

homography 𝐻𝑖,𝑖+1 (𝐻𝑖,𝑖−1) between two key frames 𝑘𝑖 and 𝑘𝑖+1 (𝑘𝑖  𝑎𝑛𝑑 𝑘𝑖−1) can be computed successively. Then 

𝐻𝑖  can be recursively defined as 𝐻𝑖 = 𝐻𝑖,𝑖+1𝐻𝑖+1  for 𝑖 < 𝑏𝑎𝑠𝑒  (𝐻𝑖 = 𝐻𝑖,𝑖−1𝐻𝑖−1 𝑓𝑜𝑟 𝑖 > 𝑏𝑎𝑠𝑒). This computation 

process should begin with the base key frame and extend out to both sides. These conditions ensure that all the 

information needed to warp and place the selected key frames in the correct positions can be calculated. A workspace 

map W can be generated by stitching 𝑘𝑖 masked with 𝑚𝑖 with respect to 𝑘𝑏𝑎𝑠𝑒. Fig. 7. (a) shows an example of W with 

three key frames chosen from 𝑉𝑝𝑟𝑒. 

One goal of this study is to utilize the workspace map 𝑊 for displaying some information to assist the operator. 

Here an application to overlay the path of the boom on 𝑊 as a simple and useful piece of information is proposed to 

assist the operator. Another video 𝑉 was recorded under the crane’s ordinary working conditions to test the process for 

overlaying the boom positions onto the workspace map 𝑊. The path of the boom head T can be identified in this input 

video V and overlaid on the workspace map 𝑊. For each frame 𝑓𝑖 ∈ 𝑉, we computed the homography from 𝑓𝑖 to 𝑊. 

Assuming the center of the top-view camera is always just below the boom head, the boom head position 𝑇𝑖  on 𝑊 is 

represented by the center position of 𝑓𝑖. By plotting 𝑇𝑖  for all 𝑓𝑖 ∈ 𝑉, the path of the boom head can be overlaid on 𝑊. 

Fig. 7. (b) shows the results of displaying the boom head position on the stitched workspace map. Three videos 

were used. The first video was recorded under the constrained conditions described section 2 with only a blue hook as 

the foreground in frames. This video was used to generate the workspace map. The second and third videos are 

recordings of crane’s ordinary working operations of moving an object with a hook. As shown in (b), the three paths 

consisting of many locations are clearly shown. Some short gaps appear in the blue and green paths due to the blurry 

frames that were removed from the sample videos. The software designed in this study successfully produced basic 

workspace maps. 

 

                      
       (a) Stitching workspace map with three frames                                 (b) Result of displaying boom head’s path on workspace map  

Fig. 7. (a) The workspace map is generated by stitching with three key frames from the pre-shot video. (b)  Three clear paths are formed by 

locating the image’s position on the workspace map. 
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5. Conclusion

The proposed prototype software with proposed methods can create a clear workspace map from videos recorded 

from the boom head of a crane. No ghosts were apparent in the maps generated and the locations of objects in the 

videos are clearly represented in the generated workspace map. All the location points formed a clear moving path in 

the workspace map. 

More work is required before this technology is ready for commercial use. First, the generation of masks for key 

frames is not automatic in the process of this article. An automated process should balance camera motion and precise 

optical flow calculations. The general optical flow calculation method used above cannot give precise result when two 

frames vary greatly. Second, the hook’s position represented in the workspace map could be helpful to operators, and 

the workspace map method can be extended to include this information. Third, some conditions may require a more-

developed warping method for the image-stitching process. Homography used alone cannot deal with very complicated 

cases such as a workspace that includes tall buildings. Finally, research is needed into additional information that can 

be displayed in the workspace map, serving purposes beyond than representing the boom’s path. 
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