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Abstract 

Recent management issues are dominated by the term of efficiency. In particular, when it comes to projects in Real Estate and 

Construction Management, resources, namely time and budgets are running short. Thus, increasingly complex projects need 

nevertheless to be carried out in less time and on tight budgets. On this background, methods to optimize the consumption of goods 

and services are being developed using the given computational power on numerical techniques. These are based on the formulation 

of systems via the theory of systems or graphs down to a level where each variable is represented by an element and all 

interdependencies can be written as functions of all other variables. If one of the variables is declared to be optimized, a state-vector 

(set of parameters) can be found which matches the given demands respectively, absolutely or at least heuristically close to the 

optimal situation. Yet, all this rests on the fundament of a pre-set structure which is not subject to optimization but has a major 

influence. E.g. the predefined hierarchic setup of responsibilities allows only for a limited degree of optimization, while further 

development would possibly demand fundamental changes of the underlying structure. Only few optimization algorithms, e.g. 

derived from the traditional transport or assignment algorithms, address this situation by formulating all-encompassing structures 

where parameters represent the strictness of impact and are thus subject to structural optimization to some degree. In this paper we 

propose a set of criteria which allow to build truly sensible, i.e. optimized structures, before optimization methods with focus on 

parameters are applied to the system. Based on fundamental aspects like reduction of complexity, sensitivity towards modifications, 

stability and long-term behavior, optimization of structures instead of parameters will be available providing an appropriately 

predefined organization in particular for unique Real Estate and Construction Management projects. 
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1. Principles of Optimizing Organizational Structures

Recent projects in Real Estate and Construction Management are becoming larger, therewith taking in more

interacting participants, consuming more and more different resources, and are to be realized within shorter 

timeframes than ever before [13]. After long initial phases of design, planning, negotiation of permissions and 

optimizing procedures they are to be conducted flawlessly in shortest time and to produce no surprising events due to 

risky issues and in particular no repetitive loops [20, 27]. Thus, part of the preparation phase is to establish 

meticulously optimal structures, processes and parameters in order to ensure proper operation of the construction or 

development phase [18, 19]. Since careful preparation is under all circumstances much less costly than later 

reconsideration, special attention needs to be put on optimal design of the operation to come. In this paper 

optimization parameters for the organizational structures are to be derived and proposed for ad hoc use. 
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1.1. General Remarks 

Optimization methods are generally based on manually decomposing the complexity of a problem into a sensible 

structure. This is to be further broken down into finer structures where finally an element is composed by a single 

variable [7]. An accordingly well-formulated system can be described by the state-vector and the transfer-function of 

how a state affects the consecutive state [2, 10]. 

If one variable is declared a preference-value, respective algorithms are available to modify the system-state until 

the preference-value is optimized, i.e. maximized or minimized. So far, this can be achieved even under further 

boundary conditions at least by numerical approaches. 

In particular, static systems may be optimized where no temporal development needs to be taken into account; 

namely the character of approaching optimal system-states plays no role. Dynamic systems may include time as an 

additional one-way developing variable. As long as the development can be determined by additional system-variables 

like the speed of modification or the strength of an assignment, e.g. as a definition of the character of controlling in 

force and latency, also dynamic aspects can be modelled and optimized. 

Yet, this poses the problem that the structure of the system itself is not subject of the optimization consideration. 

However, exactly structures, e.g. regarding responsibilities, delegation, reporting and instructing as well as control 

loops, mainly define the stability of a system developing on the time axis. Thus the question arises of how structures 

may be optimized, possibly prior to parameter optimization. 

Recent approaches work with sensible predefined organization types like trees and focus on finding minimal 

structures based on the goal to minimize the number of interfaces as these are expected to induce loss of information. 

Others propose principally specific structures as they avoid loops and therefore give no room to exponential or 

oscillating behavior. Some very classical approaches address the problem of optimal organizational structures by 

modelling all possible structures as complete graphs and optimize the degree of assignment as parameters on the 

structure. Examples would be the transportation problem or, as a derivative, the 1-0 assignment. It is common to them, 

that possible assignments need to be given manually and associated with cost. The algorithm may then make use of 

total or partial assignments due to an overall given optimization-parameter, e.g., under the precondition of finding a 

tree-structure, the optimal tree spanning a set of nodes can be found. Such is achieved by either randomly or 

systematically modifying the structure throughout the available space of states. Finally, evaluating for the best option 

reveals the preferred scenario. 

The classical algorithm of Ford [9, 18] sorts given activities according to their rank and allows for no degrees of 

structural freedom. Neither loops nor ambiguities are permitted. Thus, two problems need to be solved: On the one 

hand, rank-loops are existing and lead to some well measurable fuzziness with respect to time. This may not impede 

the algorithms but should result in clearly given values. On the other hand, a multiple set of scenarios may be given 

and needs to be evaluated for optimal structures based on ambiguous relationships. Such are given e.g. by relationships 

forcing activities to be executed anytime, but not concurrently. By now they are modelled introducing an arbitrary 

sequence of one activity preceding the other, but based on no reason. So half of the scenarios are not investigated and 

need to be tackled by manual override. 

The term “Optimization of structures” is widely understood as optimizing physical structures [20] where every 

volume elements is strongly impacted by the surrounding elements in contrast to organizational structures. One of the 

most promising approaches is based on bionic evolutionary methods. While iteratively checking for the distribution of 

strain and stress, some parts of the structure are growing, some are diminishing accordingly until an even distribution 

of loads and bearing forces is achieved. This approach corresponds to classical algorithms, e.g. derived from the 

transport or the assignment algorithms where all encompassing structures of maximum complexity are being subjected 

to optimization by rules of reducing the parameterized strength of an interaction until the criterion of optimization is 

met. 

On this background the principle requirements to develop sensible organizational structures can be formulated. First 

of all, the structure needs to mirror reality and thus must not be restricted by algorithmic imperfections. This needs 

primarily to be observed when analyzing existing structures, e.g. company teams or markets. Yet, if systems ready to 

accomplish a task need to be constructed as in a project team, some restrictions of the structures are not so much 

introduced by the abilities of an algorithm but by the problem to be solved itself. In this case, criteria like complexity 

and stability come into play [23, 26, 28]. 
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2. Principle View on Optimizing Structures 

Optimal structures themselves are only in some very rare cases subject to the particular application, e.g. for legal 

issues. Mostly advantages or disadvantages of a structure are determined by the possible outcome of the behavior of 

the given system.  

2.1. Behavior of a System 

Let a general system be given as a set of interacting elements [2, 22, 29]:     1
, 1.. , 1.. ,

i j
n k i N j K K N


   

Every element 
i

n  may employ interdependencies to every other element [see e.g. 7] causing complex behavior which 

is described by a set of differential equations 
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These are generally solved by complex exponential systems of the form [8, 23, 24] 
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As a complex system is described by a set of linear differential equations where the solutions are complex exponential 

functions, the behavior is dominated by exponential escalation or oscillation. The share of exponentially decreasing 

variables is naturally low because the therefore required simplicity of a node referring mainly to itself with a negative 

coupling factor is rarely found. Nevertheless, such form the dissipative factors which are in general responsible for the 

stability of a system [29]. Thus, depending on the sign and value of the coupling parameters , solutions reflect a set 

of more or less strongly coupled oscillators where the behavior is known to be of chaotic character. Since the entirety 

of interdependencies, i.e. the “complexity”, represents the coupling parameters of the single differential equations, 

clearly the unpredictability of the system develops with complexity. 

On this background, the terms and parameters of complexity need to be investigated in order to reflect on the 

sensibility of a given or constructed structure, in particular with regard to the sensitivity against modifications and time 

related development.   

2.2. Parameters of Complexity 

2.2.1. Heterogeneity 

Homogeneous systems are represented by valid statistical momenta for e.g. in-degree or out-degree of nodes. 

Distributions are in particular given as e.g. Gaussian or Poissonian curves. In contrast, distributions with a heavy tail 

may be described by power laws ( )P k ak


 [4]. Clearly, they cannot be represented by average values like the mean 

value or the variance if the exponent is small enough. Thus, the indicator of homogeneity, rsp. heterogeneity, is the 

exponent  : 
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In order to determine the strong heterogeneity limit, the mean value of the degree distribution is to be calculated 
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If 2   the exponent becomes negative, leading to the first term to approach a very small value to a positive power, 

which is zero, while the second term remains one.  

Thus, with 2  , the system is well represented by the mean value and thus called homogeneous. Otherwise, a 

system where 2  would be characterized by a heavy tail indicated by k   and be called heterogeneous. 

Establishing a weaker limit focusses on the determination of the second momentum (variance) which is 

 
2
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0
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However, the term with the highest exponent under the integral will be of the type
2

( )P k dkk  leading to the same 

consideration with a given limit of 3  . In both cases, this does not imply that such values
2

,k  are not existing, 

only, that they are not representing the given structure. 

Remark: A large number of surveyed real systems is in fact exhibiting values close to the limit 2 3  [1, 12, 21]  

2.2.2. Complexity 

The term of complexity is widely understood only semantically, yet not defined mathematically. In particular needs 

to be distinguished whether a system is complex or merely complicated. According to [4] at least two criteria need to 

be met to establish complexity: A complex system shows heterogeneity over all scales and emergent behavior. 

Furthermore, as emergent behavior is limited by the characteristic of being not reducible [e.g. 10], complexity might 

be understood as property of a system which vanishes to some degree if reduced. Thus, complicated systems can be 

understood by reducing those to smaller (minimal) subsystems. Possible definitions of complexity which are 

completely compatible with each other are given here: 

Complexity may be understood as the dimension of the configuration space of a project structure [25, 26]. Let the 

elements of a system fill the system volume and order these in a way that each interaction to another element is 

understood as a next neighbor interface. The dimension of the volume scaled to a maximum dimensionality of 1 can 

be written as ln( 1) / ln ln( / 1) / lnN K N N    , where N  is the number of elements and K  the number of 

interactions, possibly normalized and weighted. 

Similarly, complexity represents the average entropy of a node in comparison to the possible entropy according to 

Shannon [17]: The average number of choices for a node to influence is ( 1)   (av. edges incl. self), i.e. the number 

of real adjacent nodes, while the maximum number of choices, rsp. of adjacent nodes, is N (each node incl. self). Then 

the information content per node is:  ln 1E    while the relative information content per node is: 

 ln 1 / ln
R

E N   . Finally, the entropy S as the expectation value is also: 

 ln ln 1i iS p p                                                                     (5) 

Alternatively, the complexity   is given as the exponent of the structural development of a modification T  from 

one layer r to the next r 1 . Thus, it reflects the degree of the linearity of the structural development 

    1 rT(r) ( )/ 1 with increasing structural steps r and the positive factor with each step 
  [28]. 

Over all, the understanding of “Complexity” comprises both the value of  representing the average structural 

interdependency and the heterogeneity  as an indicator of to which degree  is equally spread all over the system or 

concentrated to specific locations. 

2.2.3. Recursiveness 

Within iterative systems complexity is not only given by the number of interactions vs the available number of 

interactions but also by the repetitiveness of interactions to be utilized. Such is determined by the parameter of 

recursiveness, given by the number of (possibly weighted) paths leading from an element back to itself: 

 
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where N is the number of elements and
,i j

A the normalized weighted adjacency matrix. The value   then represents 

the averaged percentage of an influence returning to the very same node. Thus, according to the understanding of 

complexity as the exponent of the development from step to step, repeated steps with a factor of   to the power of 

the index of the iteration needs to be considered: 
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On this background the basic complexity   needs to be modified to include the effects of the recursiveness  : 

   
( ) ( )

/ 1 ln 1 / ln
R R 

                                                (8) 

Zero recursiveness leads therefore to no effect while higher recursiveness 1   leads to significant increase of 

complexity. In particular needs to be noted that the complexity possibly rises to values greater than unity since 1   

indicates the utilization of all possible interactions just once and not repeatedly. 

Remark: Overall recursiveness obviously increases complexity as it possibly leads to unpredictable behavior. This 

is according to the higher degree of the differential equation system allowing for chaotic oscillation and escalating 

values. Therefore, the reaction of a system on modifications and the immediate as well as the long-term stability are 

mainly determined by recursiveness. Since in this context no general rules concerning the system can be given and the 
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system is to be taken as it is, only avoiding high degrees of overall recursiveness can be recommended. Yet, as is 

discussed later, recursiveness can be used to reduce complexity by separation into smaller but complex systems of 

controlled units. 

2.2.4. Combining Complexity and Heterogeneity 

The aforementioned complexity is based on the average connectivity and needs to be considered in the light of 

heterogeneity: 

With ln( / 1) / ln ln( 1) /K N N k N     and ( ) /( 2) 2k a      we obtain 

  ( )
ln / 2 1 ln

H
k N                                                            (9) 

 

Clearly can be seen to which degree the parameter of complexity becomes distorted with rising heterogeneity and 

reaches large values when approaching the limit of 2  .  

2.3. Reducing Complexity 

According to the meteorologist Edward Lorenz [14], who originally introduced the understanding of chaotic 

behavior, exactly the term of “complexity” is defined as the property which leads to unpredictable behavior of systems. 

Concluded reversely, complex systems need to be avoided in order to achieve controllable systems. Generally spoken, 

reducing complexity is a means to make a system more predictable as it simplifies its behavior [6, 11]. Using any of 

the given definitions of complexity, the concept of separability allows to understand this in more detail. 

2.3.1. Concept of Separability 

The tendency of breaking up a system into a set of independent superimposable units is no new understanding and 

has been formulated within the context of several situations [3, 5]. E.g., the RNM-algorithm (Random Neighborhood 

Method [15]) is used to identify independent subnetworks within a network in order to treat them independently and 

finally superimpose their outcome. Also, the principle of division of work follows the same idea. A set of work to be 

done is assigned to different units as independent tasks but this is to be paid with an increase of coordination effort and 

expenses [16].  As previously pointed out, complexity may be defined amongst other concepts by the increase of the 

consequences of a fault travelling through a network. Avoiding such cumulation is accomplished by shortening the 

length of the developing chains, i.e. separating the range where a fault may have consequences [26]. 

2.3.2.   Formal Approach on Separability 

Local complexity, defined as ln( 1) / ln /N K N       [26] is understood as the relative entropy of a node 

as a share of the maximum local entropy ln N . Using the same understanding, the possible entropy S of a total system 

allowing each element to equally influence any other element needs to be investigated in order to understand the effects 

of separability. The entropy of a total system is: 

ln( 1) ln( 1)
N

S N N N                                                             (10) 

If a system is separable, i.e. can be divided into two distinct subsystems, the possible interaction within the systems 

is reduced to a given fraction while the remaining overall interaction of the two subsystems is linear, i.e. additive. 

Assuming separation into subsystems of equal size each for illustration purposes, we obtain the entropy as a function 

of the number z of subsystems. The first term refers to the entropy of the N/z subsystems while the second term mirrors 

the entropy of the newly interacting subsystems. 

   ( / ) ln / ln 1/S N z z N z z                                                          (11) 

The minimum is given by the balance of reducing the entropy of the subsystems with size but increasing entropy 

with the rising number of still interacting subsystems:   min0 / z S z N     . 

The degree of recursiveness is also reduced by separation into smaller subsystems since a significant number of 

loops is cut down to smaller loops with the subsystems or fewer loops through interdependencies between subsystems. 

Assumedly let the recursiveness utilize the complete volume of the system, i.e. the interactions distributed over the 

volume. If z subsystems are separated, the number of interactions available for recursiveness decreases accordingly: 

 ( )
1

unsep
N N   and       ( )

/ / 1 2 1
sep

N z N z z z    Since N and z are expected to be large numbers 
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we obtain furthermore: 
( ) 2unsep

N  and  ( ) 2 2 2
/ 2

sep
N z z  . The minimum of the ratio 

( ) ( )
/

sep unsep
  yields 

the optimal separation with respect to recursiveness, provided beta being not zero and leads to: 4

min / 2z N

In addition to this consideration of the overall recursiveness, the local recursiveness remains to be discussed: The 

difference would be in particular that in a very local environment no more recursiveness leading to chaotic behavior 

needs to be taken into account, but the recursive parameters can be analyzed and in most cases constructed in a 

positively utilizable way. The optimal substructure thus would be to localize recursiveness absolutely, i.e. restricted to 

a set of only two mutually interacting elements where the outcome can be safely dissipating ( 0  ) and therefore 

with 
( )

0
local

   contribute starkly to stabilizing the whole system. 

The issue of heterogeneity yields no optimum in terms of numbers since all these considerations refer to an average 

situation which is not given with non-homogeneous systems. Therefore, the optimum state to be achieved would be a 

homogeneous network in general. Introducing subsystems not only has the effect of separating independent sections 

but also helps to understand the smaller subsystems as they demand to be more comprehensible allowing to treat them 

separately. This will only be the case if they are no more required to be understood as average behavior but as a well 

understood mechanism. So, the concept of heterogeneity becomes obsolete within the sections. This leaves the 

requirement of having to choose the separation so that the heterogeneity of the reduced system - comprising and thus 

interfacing the subsystems - is much lower and the overall situation becomes homogenous. 

2.4. Examples and Case Studies 

In many situations heuristic methods already utilize the principle of separability. 

2.4.1. Anti-Rigidity Measures: Time-floats and Fuzzy Logic 

Wherever complex systems need to be understood and solved, a large number of conditions for a limited number 

of variables needs to be met. The heuristic methods traditionally introduce approaches to weaken the conditions. In 

network plans the rule of using the maximum required time distance when optimizing project durations is set. 

Obviously being not optimal, this proceeding at least solves the contradiction of relationships aiming at a single node. 

Furthermore, deliberately time-floats (to be distinguished from time-floats resulting from the given relationships) are 

positioned in order to decouple sections of the network plan allowing delays not to pass transitions [9, 18]. The same 

methods are applied on production volumes introducing safety margins and overproduction. Similarly, modelling 

interactions as fuzzy variables weakens the strict rules of interaction in order to allow for a solvable overall system, 

which may be slightly or strongly contradictory otherwise.  

Case Study: If a set of 10 subsequent processes each following an Erlang (r=16) duration distribution where the 

average duration is 5 days and the variance is 1.25   the coupling is strong, thus  ln(10 /10 1) / ln(10) 0.3     

Introducing float times of 1 day between the subsequent processes reduces coupling from 45.1% to 21.2% i.e. from 

100% right hand overtime risk to 47% overtime risk. Therewith, the resulting complexity is reduced to

ln(0, 47 1) / ln(10) 0.167    while a float time of 2 days leads to only ln(0,15 1) / ln(10) 0.06    . 

2.4.2. Network Plan 

A network plan being the set of activities to be consistently positioned on the time-axis is artificially restricted to 

being loop-less ( 0  ) and thus restricted regarding its complexity. This is required based on the argument of 

mapping logical sequences to ranks where the cause always lies on a lower rank than the consequence. Then loops 

cannot exist and even if solved by iteration a worst case maximum of N iteration runs of N steps each is required to 

assign each node the correct rank value. Classical algorithms such as FORD [9, 18] rely on this fact.  

The average complexity approach allows estimating the average effort to 1N


   steps per N worst case runs 

where heterogeneity plays no significant role. Yet, if nodes to be calculated are picked randomly the effort rises 

nonlinearly with the center of gravity of the high degree nodes sitting more towards the start in contrast to the end of 

the causal chain. Taking the extended complexity  ( )
ln /( 2) 1 ln

H
N     and therefrom

( )

/( 2) 1
H

N


    as the speed of propagation of changes through the network, at least the increase of effort can 

be estimated to  2A N A N       . Besides constant factors this is N for large values of  proportional to 

N as before, but rises to infinity with  approaching the value of 2. 

Yet, reflecting real situations circular references are indeed possible, e.g. representing the same factual relationship 

seen from two or more different perspectives redundantly. If known, they could be eliminated, but if not, they lead to 

an infinite number of iteration runs and therewith infinite results when calculating causal ranks. If iterating positions 

on the time-axis instead the results will be finite since redundant interdependencies lead to the same result and thus a 
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stabilizing situation. Even more, slightly contradictory instructions lead to a virtually stable situation as the system 

may oscillate with low amplitudes around the fuzzy solution correctly indicating the slightly undefined true position 

on the time axis [e.g. 9, 18, 19, 25]. In this case, 0  is required but at the same time the parameters  inevitably 

need to be real and negative or at least, if complex, leading to oscillation with a strongly limited amplitude. Since this 

is not always the case such systems pose the challenge to be designed carefully in order to exhibit long-term stable 

behavior. 

Case Study: A most simple strictly linear network clearly fulfills the requirement of being a loop-less network. With 

a given number of e.g. 50 activities each directly following the other we have: 0  ,    and thus 

ln((50 1) / 50 1) / ln(50) 0.17
H

     . This can only be simplified by further reducing the number of members 

of the given chain of activities. If the activities were arranged as a completely parallel set we obtain 

ln((50 2 50 2) / 50 1) / ln(50) 0.27       . However, the strong central pooling node leads to a starkly 

inhomogeneous system 1  where 
( )H

   becomes virtually infinite and no sensible statements can be issued.  

2.4.3. Tree-Structures 

Classical tree-structures are constructed in a similar way, introducing artificial restrictions in order to simplify the 

behavior. In particular, the requirements of being loop-less and of unambiguous unidirectional paths from each node 

to the singular source-node are effectuating limited complexity [5, 28]. This induces some principle incompleteness 

since the characteristic variable to branch on is reduced to merely a single one which does not correspond to reality. 

Yet, separability is made use of, based on the assumption that sub-nodes are only cooperating via the single super-

node and do not have other interrelations.  

The recursiveness 0  clearly keeps the system small and predictable, unidirectional paths furthermore ensure 

short and clear lines of impact, be it responsibility and instructions (towards the leaves of a tree) or reports (towards 

the root). The fundamental complexity is given by the algorithms of finding the least spanning tree, where each node 

is connected by as few interactions as possible, implying  minimal ln 1 ln minimalK N N      . 

Extending this, the parameter of heterogeneity allows to optimize tree-structures furthermore leading to the plain rule 

of employing nodes with a similar span of responsibility. For example, if exactly   nodes are connected to each super-

node and l  levels of hierarchy are present, the number of nodes will be in total  

   1

0..

( ) 1 / 1 1
i i l

i l

N i N and K N   




                          (12) 

The number of connections is 1K N  since each node is connected to exactly one super-node except the top-node 

itself. Counting downward yields the same value due to the closed character of the graph. With  1K N N N      

the fundamental complexity is fairly small for larger systems   ln 1 1 / ln ln 2 / lnN N N N    . Any 

deviation from a constant responsibility span  changes not much of the structure itself but leads to rising heterogeneity 

which should be avoided. This is only a very minor requirement since a tree-structure is already reduced to an optimal 

shape as far as possible. 

Case Study: Let a tree-structure represent the responsibility for certain units, e.g. 50N  . Since responsibility can 

neither be operated in loops, nor can deal with double paths, the tree is the only available structure leading to the 

parameters 0  ,    , ln 2 / ln 50 0.17
H

   . However the physical decomposition of a building would 

follow a similar tree-structure with the same parameters, but the constructor would be forced to limit the numerous 

existing interactions of the elements to the few options permitted by the tree. 

2.4.4. Control-loops 

Inherent dependencies, e.g. the necessity of construction parts to fit, are traditionally not implemented in maps of 

the system but defined by design (“Gestaltungsplanung”) [27]. Thus, they are expected to be fulfilled without further 

activity. Yet, this dependency is still given and the interaction is active and possibly turns out to be crucial if not 

matching perfectly. On this background, a fairly complex system is treated in a starkly simplified manner by merely 

ignoring the given complexity.  

On the one hand, treating the complete system accordingly would present the correct parameters of complexity, 

heterogeneity and recursiveness. On the other hand, methods are required to construct the system in a way which 

maintains the expected simplicity. This is accomplished by the introduction of control-loops. Additional elements (so-

called “control processes”) are introduced besides each critical element ensuring the accuracy of particular variables 

within the given margins. Therewith the strong dependency of the consuming node on the quality of the providing 

node is completely broken, the system largely decoupled into numerous fairly small independent subsystems. This is 

valid as long as the resources required to ensure the controlling are not coupled themselves and add another 

CCC 2018 Proceedings DOI 10.3311/CCC2018-080

608



dependency. Based on the strength of the controlling units additional effects like the stabilizing behavior and the time 

constants to stabilize the result come into play [26]. The subsystems tend to behave like coupled oscillators, where the 

transfer of oscillations through the network needs to be observed very carefully. Furthermore, fast oscillations are 

introduced by fast regulators leading to the necessity of damping the behavior by low-pass filtering of the network, i.e. 

dissipation by cumulating local values and thus a lower reaction time. 

If all possible interactions of a complex system were separated by introducing N additional control-loops, the 

resulting system may be treated as a new system comprising N pairs of elements being perfectly controlled and held at 

constantly fitting values. Thus, the local 0 are highly recursive but due to the very local character of the loops 

well dampened and under control. Then, all interactions of the remaining system would vanish at least to a degree of 

control  ranging in  0..1 , the heterogeneity would be unchanged as well as the inherent  . Only the number of 

(=sum of weighted) interactions would be reduced by a factor of   while probably an additional number of N  

interactions would appear due to the dependency of the required resources for each control loop on the total effort. 

With  ( )
(1 )

C
K K N K N K         we obtain     ( )

ln 1 1 ln
C

N       . In total, mainly 

independent of  , a control degree of about 0,9  is required to bring the complexity down to 50%. In particular 

needs to be denoted that there is no minimum detectable indicating complete control to be the optimal improvement to 

a system. 

Case Study: A set of 100 tightly interacting elements with 3   leads to 0     and therewith to complexity

ln(300 /100 1) / ln(100) 0.3    . Introducing additional control elements for each value adds another 100 

supervising elements and two further interactions each for control. Thus, we obtain a new value of complexity which 

does not change much: ln((300 2 100) /(100 100) 1) / ln(100 100) 0.23        . However high recursiveness is 

introduced since the control elements refer to the controlled elements and vice versa leading possibly to 1  where 
( )H

 escalates. Yet, it is known (since the construction of control requires this to be so), that the respective exponents 

 are strictly negative, the subsystems formed by an element plus the controlling element comprise all the respective 

recursiveness and can be treated as completely stable subsystems safely providing the given values. Thus, the system 

formed by the stable subsystems is no more dependent and we obtain vanishing complexity: 

ln((300 0) /(100) 1) / ln(100) 0      

 

3. Conclusion 

Organizational structures, e.g. for a Real Estate or Construction project, cannot be predefined in general but need 

to be set up according to the given situation. 

 On the one hand, the situation is determined e.g. by a social or technical environment, a market, a specific method 

or task, or a structure inherited from the past. Then, a meticulous analysis is required to understand and predict its 

future behavior as are actions, performance and conduct. In terms of systems theory this is its general stability and 

sensitivity behavior based not so much on details but on central parameters like complexity, heterogeneity and 

recursiveness proposed here. This will principally allow judging the value or risk of any engagement to the given 

situation or project and enable to make proposals of improvement. At least critical hotspots of the project can be 

detected easily and special attention directed to these which may turn out to be crucial for large and tightly constructed 

projects.  

On the other hand, systems, i.e. organizations, are unique to each project and therefore to be constructed explicitly 

for the particular needs. Since projects are defined to be non-recurrent and non-repetitive, exactly the fitting 

organization is required to cover the risks of unknown variables and situations by its ability to treat them positively 

and therewith lead the project to success. Thus, risk management is the property of an organization to become 

independent of lacking specific knowledge of particular variables. Therefore, parameters like complexity, 

heterogeneity and recursiveness are the basis for any estimation of the sensibility of the organization towards changes 

of variables and determine the behavior, i.e. the stability of the crucial results. Thus, organization structures need to be 

constructed with a particular focus on such parameters and optimized with respect to these prior to being set in 

operation.  

In short, we propose, based on the formal proof of the heuristically well known rules that any organization or 

structure must be exhibit the least possible complexity 
( ) ( ) ( )

, , ,
C R H

    , which can be achieved by constructing as 

many subsystems as possible, mainly independent from each other and subjected to strong local controlling 

mechanisms, where again resources need to be independent of each other. Only after this, classical optimization 

methods may be applied to the given system without the need to reconfigure fundamental pre-settings. 
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