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Abstract 

Project schedules in construction are responsible for an efficient deployment of resources on the job-site and for the overall 

efficiency of work progress. Current approaches too often lead towards sub-optimal work plans or, sometimes, even scarce 

productivity. For that reason, a lot of research was devoted to the development of automated scheduling tools, which can 

provide optimal solutions while requiring reasonable computational effort. As a consequence, planners can save their time and 

involved resources can benefit from the efficient organization of work packages and tasks. However, automation in construction 

scheduling is a tough challenge, because it requires to generate and optimize multi-objective problems, which usually include 

several parameters. In addition, deviations from what expected is quite frequent, and these algorithms should be able to quickly 

revise the previous plan, in fact performing dynamic planning. Hence, this paper presents an agent-based approach, which can 

be integrated in a BIM-based platform to perform automated scheduling of construction works. The BIM component can 

provide instant access to relevant information, which must be integrated with some user defined inputs, in order to feed the 

optimization algorithm. This algorithm was based on the multiple ant colony system for vehicle routing problems with time 

windows, because it can handle several resources travelling through many locations, each one performing its task, even in the 

presence of time constraints. The optimization was performed with respect to both overall makespan and total costs. An 

application to the case of bored piles execution will be presented in this paper.     

© 2018 The Authors. Published by Diamond Congress Ltd. 
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1. Introduction

Project schedules in construction projects help project management teams handle interrelated critical aspects of

management, such as time, cost, resources. It requires availability of information both at the pre-execution stage 

and during execution. The standard construction practice is commonly done applying diagram methods to sequence 

activities that are based on work packages defined according to a work-breakdown-structure. In this phase, the 

planner’s background and experience play a vital role in the creation of a construction schedule, because she/he is 

in charge of assuring consistency with the scope, plan efficiency and proper deployment of resources. Then, 

progress management usually involves deviation analyses between the actual progress and the initial plan that is 

constantly being updated and revised. The often scarce communication and the absence of automation requires the 

adoption of standard methods, such as face-to-face meetings and paperwork. This approach has been identified as 

an inhibitor to increasing productivity and a frequent source of miscommunication and rework [1]. To solve the 

problem of insufficient information and sub-optimal planning, researchers turned towards automating the process 

of generating schedules. Research has been carried out through the past decades in several fields, where automated 

tools demonstrated their ability to provide a variety of advantages, such as quickly generation and updating of 

schedules, optimization of project resource allocation and levelling, of the makespan and/or total costs.  

However, there are several research challenges that are still open. In this paper, we will mainly focus on 

computational tools and on information handling. As far as computation is concerned, in the past decades a number 

of solutions were suggested, ranging from case-based and knowledge-based reasoning to model-based simulation, 
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until the latest approaches inspired from artificial intelligence [1]. More recently, thanks to the advent of powerful 

computational tools, the potential of agent-based simulation was highlighted, and first applications in the field of 

optimal planning were produced. This approach manages to incorporate the inherent variability that arises from 

the independent construction subjects’ behaviour as they interact on a construction site [2]. In fact, multi-agent 

simulation is suitable for modelling resources’ behaviour and interactions in complex settings, like in construction. 

These models are capable of specifying the characteristic of trade crews, their work methods, the amount of work, 

workspaces and dependencies between tasks. As a result, simulations encapsulate both variability and uncertainty 

of the construction workflow [3]. 

The next section 2 of this paper reports the relevant background in the field, section 3 concerns a new algorithm 

for agent-based simulation, section 4 first suggests an overall framework for automated planning of construction 

schedules, then details about one scenario where it was implemented, finally it discusses its main findings. 

Conclusions and references sections close this paper.  

2. Scientific Background

Automation in scheduling has been studied mainly in the last three decades and several approaches were 

experimented [1]. Cased-based reasoning (CB) is able to exploit the specific knowledge of formerly practiced 

situations and compares present problems with an earlier situation, which is then used to solve and explain the new 

problem [4].  Similarly, knowledge-based reasoning integrates knowledge from several sources (e.g. construction 

rules, basic physics etc..) for the purpose of generating schedules, even retaining learned experience. Genetic 

algorithms (GA) is an optimization tool that uses a heuristic search which mimics the natural evolutionary process. 

Using a mathematically defined fitness function as the objective function, the initial randomly generated genomes 

can evolve into optimized solutions for a given problem [5]. An expert system, which belongs to the artificial 

intelligence tools, is defined as a computer based algorithm that imitates human decision-making skills. Expert 

systems are designed mainly using if-then structures instead of regular practical codes. Neural networks are 

inspired by the brain of animals and are able to perform pattern recognition using “all-or-none” (i.e. a type of binary 

language) rule of the nerves. Several calculators are known, e.g. the “Hebb’s rule”. They need to perform 

optimization relying on a huge database, so their learning process must be fed by thousands of records. Model-

based systems use formalized construction method models to perform the scheduling. These methods usually 

decompose higher level activities of the schedule into lower level activities to ease the linking of the schedule with 

diverse level of details.  

However, none of these approaches can tackle all the relevant aspects of the scheduling problem. Indeed, case-

based and knowledge-based are good at identifying tasks and sequencing them [4]; although genetic algorithms is 

known as a meta-heuristic optimization method that is mainly suitable for solving multi-objective problems [5], 

they were applied in scheduling mainly to optimize resource utilization and perform resource levelling to come up 

with better project schedules compared to heuristic methods [1, 6]; expert systems provided an ample flexibility of 

applications, but their development procedure is not standardized, yet, and relies on the experience and judgement 

of the researcher [1]; neural networks, besides requiring a huge dataset as previous knowledge, they were shown 

to be a powerful tool for dealing with some specific scheduling problems (e.g. job-shop scheduling, single-machine 

scheduling, timetable scheduling), it was not used for construction sequencing and scheduling [7]; model-based 

approaches requires a great effort in the development of rules (e.g. spatial reasoning) for automating, which some 

authors tried to simplify through the use of templates stored as a knowledge base [8]. As a result, one of the most 

important gaps to be addressed is the development of a hybrid approach that could address multiple objectives 

associated with scheduling [1]. 

Another important challenge is the development of adaptive algorithms. In fact, project planning is usually done 

at different levels. While a master schedule provides a global view of project milestones and the overall execution 

strategy, it must be always specified by a short-term schedule, which is a more detailed plan listing work to be 

done within a relatively short time window based on the most up-to-date site conditions and performance [9]. In 

the last planner system this second level is called look-ahead schedule. But the construction site is not stationary, 

and the plan must react to system changes on a real-time or near-real-time basis. So, when it is generated by a 

simulation model, it requires that such a model is able to capture site condition changes constantly and be updated 

accordingly so that the changes and their impacts can be evaluated in a timely manner [9]. In other words, adaptive 

framework must include real-time data acquisition modules, process interpretation modules, adaptive modelling 

and optimization algorithms. The long term goal of the adaptive modelling component is to streamline the model-

updating procedure by taking advantage of inputs from the data acquisition and the process knowledgebase 

components. For example, real-time and most-recent values of an activity duration can detect changes in the 

duration pattern based on past measurements.  
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Further automation can be exploited in this process if a BIM repository is used as the archive of all the 

information required by the optimization algorithms to perform its estimations. To date, BIM was mainly used to 

generate quantity take-offs, 4D scheduling and building simulations. However, even the generation of construction 

schedules can retrieve data (e.g. spatial, geometric, quantity, relationships and material set of information) from 

what is stored in BIM models [10]. This approach would achieve significant time reductions in scheduling, 

compared to the traditional manual methods.     

For the reasons stated above, in this paper we highlight that automated scheduling can take advantage of BIM-

based structured information [10]. Then, an algorithm based on multi agent-based simulation will be suggested and 

its performances analysed, showing that it is able to imitate real world process of systems, where the global 

behaviour emerges as a result of interactions of single agents [11]. Agents can be active, proactive, autonomous, 

cooperative, adaptive and mobile. They interact to reach a global objective. This tool allows us to evolve from 

single-objective optimization towards a multi-objective optimization problem based on ant-colony simulation. In 

this approach, every objective can be optimized by a different colony, that is cooperating and contributing to the 

whole process. In addition, the framework proposed in this paper was designed so as to be capable of continuously 

re-planning the schedule as a result from unexpected occurrences, in fact performing dynamic and adaptive 

scheduling. In the implementation, several scenarios will be proposed in order to show the sensitivity of the 

algorithm to several inputs, such as the ratio between direct and indirect costs.  

3. Development of the optimal planning algorithm

3.1. Overview 

According to some research findings from the manufacturing field, when the global behavior of a complex 

system is the result of interaction among many actors, it resembles the behaviour of food-foraging ants, which is 

called stigmergy. Even from the computational point of view, stigmergy is a very efficient approach because it is 

capable of incorporating nonlocal information while employing only local reality-mirroring components [12]. To 

sum up, the following steps are performed in a stigmergic approach: 

• In absence of any signs in the environment, ants perform a randomized search for food;

• When an ant discovers a food source, it drops a smelling substance, called pheromone, on its way back to

the nest while carrying some of the food. The pheromone trail evaporates if no other ant deposits fresh pheromone; 

• When an ant senses a pheromone trail, it will be urged by its instinct to follow this trail to the food source

and will deposit pheromone itself on its way back to the nest. 

This pattern is an emergent behavior of the ant colony, that is ordered and is robust against the uncertainty and 

the complexity of the environment. Although information about the presence of food is made available locally, it 

affects the global behavior of the colony and the state of the environment. 

The algorithm presented in this paper is an extension of the multiple ant colony system for vehicle routing 

problems with time windows (MACS-VRPTW), which is reported in sub-section 3.2. The enhancement proposed 

by the authors is detailed in sub-section 3.3 and concerns some steps for overall cost optimization. For the sake of 

clarity, Fig. 1-a depicts the whole logic: the grey boxes framed with a solid line represent the typical steps found 

in a MACS-VRPTW algorithm, whereas the white dashed-line boxes depict those parts of the algorithm that were 

added to perform what is described in sub-section 3.3.  

3.2. Multi-objective optimization through MACS-VRPTW 

The basic algorithm implemented to perform optimization was the vehicle routing problem. Indeed, driving 

crews along the most cost-effective path recalls problems about routing optimization. More specifically, we refer 

to the multiple ant colony system for vehicle routing problems with time windows (MACS-VRPTW), which 

performs ant colony optimization [13].  

Basically, MACS-VRPTW is organized with a hierarchy of artificial ant colonies designed to successively 

optimize a multiple objective function: the first colony minimizes the number of vehicles while the second colony 

minimizes the travelled distance. A VRP is composed of 𝑛 customers served from a unique depot 𝑐0. Each customer

𝑐𝑖 , 𝑖 = 1, … , 𝑛 asks for a quantity 𝑞𝑖  of goods and a vehicle capacity 𝑄 is available for delivery. Each delivery

cannot be split and the vehicle has to periodically return to the depot for reloading. On the overall, the problem is 

represented as a graph made of a node set 𝐶 = {𝑐0, 𝑐1, … , 𝑐𝑛} and arcs 𝐿𝑖𝑗 = (𝑐𝑖 , 𝑐𝑗): 𝑖 ≠ 𝑗 to which a matrix of

travel time values 𝑡𝑖𝑗 is associated.

CCC 2018 Proceedings DOI 10.3311/CCC2018-097

741



(a) (b) 

Fig. 1. Overview of the enhanced MACS-VRPTW algorithm (a) and details of the MACS-VRPTW implemented in this paper (b). 

The goal is to find a set of tours of minimum total travel time, where each tour starts and ends at the depot c0. 

Extensions to the basic problem include: service time for each customer; duration limit of each tour. 

In this paper the VRP with time windows, i.e. VRPTW, was applied. This problem includes for the depot and 

each customer 𝑐𝑖 a time window [𝑏𝑖; 𝑒𝑖], during which each customer must be served (i. e. it must be served between

starting time 𝑏𝑖 and end time 𝑒𝑖). The VRPTW solution approach proposed in [13] assumes that the tours are

performed by a fleet of identical vehicles and that the optimization is based on the Ant Colony System (ACS) that 

is briefly described in the following. ACS is applied for minimizing both the number of vehicles and travel time 

(i.e. to achieve a multi-objective optimization). To this purpose, two measures (i.e. heuristics) are associated to 

each arc: closeness (𝜂𝑖𝑗) and pheromone trail (𝜏𝑖𝑗). The first one is the inverse of the distance, the second one is

dynamically changed by ants at runtime. Pheromone trails are used in conjunction with the objective function to 

construct new solutions: a higher attractiveness is given to the arcs with a stronger pheromone trail. Pheromone 

levels give a measure of how desirable (attractive) it is to add a given arc in a partial solution. At runtime, 𝑛𝑎 ants

build their own tours in parallel. Each ant is assigned to the depot 𝑐0 and must build a feasible solution, by

iteratively adding new nodes until all nodes have been visited just once. When ant 𝑘 (for 𝑘 = 1,… , 𝑛𝑎) is located

at node 𝑖, it chooses the next node 𝑗 probabilistically in the set of feasible nodes 𝑁𝑘
𝑖  (i.e. the nodes that have not 

been visited yet and that comply with the given time window 𝑏𝑖 ≤ 𝑡𝑖 ≤ 𝑒𝑖).
The attractiveness of a node is defined by Eq. 1: 

𝑝𝑖𝑗 = {

𝜏𝑖𝑗⋅[𝜂𝑖𝑗]
𝛽

∑ 𝜏𝑖𝑙⋅[𝜂𝑖𝑙]
𝛽

𝑐𝑙∈𝑁𝑘
𝑙

𝑖𝑓 𝑐𝑗 ∈ 𝑁𝑘
𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

Parameter β weighs the relative importance of the heuristic evaluation based on the distance, with respect to the 

pheromone trail. 

The probabilistic rule, at each iteration, randomly decide between two alternative selection criteria: exploitation 

and exploration. This is done based on a parameter 𝑞0 ∈ [0; 1] that determines the relative importance of

exploitation versus exploration: the higher 𝑞0 is the more likely the exploitation criterion is with respect to the

exploration criterion. Ant 𝑘 with probability 𝑞0 sorts out the next node as that one with the highest 𝜏𝑖𝑗[𝜂𝑖𝑗]
𝛽, while

with probability (1 − 𝑞0) it selects the node as an observation of the discrete random variable with probability

distribution 𝑝𝑖𝑗 , ∀𝑗 = 1,… , 𝑛 (see Eq. 1).

Settings 
(work locations, resources, arcs, ant 

size, simulation parameters)

Initialization 
(“n” ants build parallel tours passing 

through all nodes)

Selection of vehicle 
(random draw, see Eq. (4) )

Each ant probabilistically 
choose node j (see Eq. (1) )

Local and global pheromone 
update (see Eqs. (2) and (3) )

Cost minimization
(vehicle costs + overheads)
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In the MACS-VRPTW, it is optional to include that, once each ant has built a complete solution, it is tentatively 

improved using a local search procedure. 

The best solution is used to modify the pheromone trail matrix (𝜏𝑖𝑗) as follows:

𝜏𝑖𝑗 = (1 − 𝜌) ⋅ 𝜏𝑖𝑗 +
𝜌

𝐽Ψ
𝑔𝑏 ,   ∀(𝑖, 𝑗): 𝑐𝑖 , 𝑐𝑗 ∈ Ψ

𝑔𝑏 (2) 

Where 0 < 𝜌 < 1 and 𝐽Ψ
𝑔𝑏

 is the length of 𝐽𝑔𝑏, i.e. the shortest path generated by ants since the beginning of

computation. Future ants will use this information to generate new solutions around the best solution. 

Locally, when an ant moves from node 𝑖 to node 𝑗, the amount of pheromone trail on arc 𝐿𝑖𝑗  is decreased by the

amount: 

𝜏𝑖𝑗 = (1 − 𝜌) ⋅ 𝜏𝑖𝑗 + 𝜌 ⋅ 𝜏0 (3) 

where τ0 is the initial value of trails. 

Then, the process is iterated generating again m ants until a termination condition is met. This algorithm was 

used in MACS-VRPTW with two objectives: minimization of the number of tours and minimization of the total 

travel time. To this purpose, two independent colonies are used, one per each objective, but both share the variable 

Ψgb. 

3.3. Extension towards multiple activities 

In the final version of the MACS-VRPTW we implemented in this paper (Fig. 1-b), some changes with respect 

to the reference version detailed in sub-section 3.2 were made. First, only the ACS-Time colony was necessary. 

There was no need to use another ant colony (although it can be implemented in the MACS-VRPTW), because the 

objectives of reducing the number of vehicles and minimizing the total travel time can be done by means of cost 

optimization. Secondly, the local search option of MACS-VRPTW was not implemented but it could be used for 

fine tuning the solution. Finally, no capacity limit was set (i.e. the Q value was not inputted and infinite capacity 

is assumed); however, this option was kept open and it is expected to be implemented in future versions for 

handling activities that require to return periodically to the stocking area. 

Rather, additional functionalities were added in the final algorithm, that are necessary for the construction field, 

where multiple different activities are involved in the planning task. As shown in Fig. 1-b, each ant consists of all 

activities (vehicles) performed on all customers (nodes) by following the correct operation sequence. The time 

window can be differentiated for each vehicle according to the nodes and operation that must be served and the 

specific productivity and costs can be set for each vehicle. The computation of costs was generalized: direct costs 

include those ones that are generated by travelling between nodes, waiting for work (e.g. because the previous task 

was not accomplished in the next node) and operation (e.g. according to productivity). Also, indirect costs were 

added, which depend on the total elapsed time. Constraints that take into account for prerequisite activities have 

been added in order to enforce the correct operation sequence, hence the relationships between vehicles match the 

ones between activities. Moreover, the best solution is re-evaluated, compared and updated at each iteration to 

allow for dynamic re-planning when unexpected events occur. 

The generalization to multiple activities required a double selection process for making each movement of an 

ant: not only the next node have to be selected but also the next vehicle must be chosen for operating in that node. 

When ant 𝑘 (for 𝑘 = 1,… , 𝑛𝑎) is located at node 𝑖, it chooses the next vehicle 𝑣 probabilistically in the set of

feasible vehicles 𝑉𝑘
𝑖 (i.e. the vehicles that have not visited all nodes yet) based on the number of feasible nodes 𝑛𝑘

𝑖𝑣

for that vehicle: 

𝑝𝑣
𝑖 =

{

𝑛𝑘
𝑖𝑣

∑ 𝑛𝑘
𝑖𝑢

𝑢∈𝑉𝑘
𝑖

⋅ 𝛾 𝑖𝑓 𝑣 ∈ 𝑉𝑘
𝑖  𝑎𝑛𝑑 𝑣 𝑤𝑎𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛𝑖

𝑛𝑘
𝑖𝑣

∑ 𝑛𝑘
𝑖𝑢

𝑢∈𝑉𝑘
𝑖

𝑖𝑓 𝑣 ∈ 𝑉𝑘
𝑖  𝑎𝑛𝑑 𝑣 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛 𝑛𝑜𝑑𝑒 𝑛𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 

where γ > 1 is a factor used to increase attractiveness of vehicles that was already active and, therefore, to foster 

solutions with continuous vehicle operations. Similarly to what is done in the classic MACS-VRPTW, the next 

vehicle is then selected by an observation of the discrete random variable with probability distribution pv
i , ∀𝑣 =

1,… , 𝑛𝑣 (see Eq. 4).
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4. Simulation and testing

4.1. General framework and scenarios 

The general framework we suggest in this paper is meant to be able to exploit information stored in BIM (e.g. 

through BIMserver) to assist in generating schedules. Indeed, automatically retrieving information from a BIM 

model could help achieve significant time reductions in scheduling as compared with traditional manual methods. 

In general, the data that can be retrieved from a BIM model are those ones regarding the material of construction 

components, their locations on site and quantities. On the contrary, the remaining information must be defined 

through inputs form the user, who is in charge of defining the maximum number and types of available vehicles 

and crews to perform on-site activities, the location of depots where equipment is parked when not in use, 

constraints about sequencing for activities. Once the algorithm is fed with these data, it can perform optimization 

and work out the optimal schedule, as shown in Fig. 2. 

Fig. 2. Framework of the planning system tested in this paper and based on the extended MACS-VRPTW algorithm 

The case study developed in this paper concerns bored piles execution, which includes a series of tasks well 

described in the work by Zayed and Halpin [14]. The main tasks to be performed are, as a first step, adjusting the 

machine on the pile axis and drilling the pile; as a second step, erecting the rebar cage using a crane; as a final step, 

erecting the concrete pouring tool and pouring concrete until the pile is finished. After this process is accomplished 

for one pile, the machines need to be relocated and the process is repeated again for the next one.  

Hence, the outcome of our planning process was a schedule made of three activities (i.e. drilling, rebar, pouring), 

which are accommodated so as to provide the sequence of piles that must be worked by each machine and its crew 

(i.e. drilling machine, crane and pouring tool). Of course, at every pile the possibility for a machine to perform its 

task was constrained by the sequence of technical steps typical of bored piles, i.e. drilling-rebar cage-pouring. As 

a result, if we focus on a particular machine, the algorithm will determine the ordered list of piles where it must 

perform its task. To be noticed that the ordered list that is optimal for one machine can be different from the optimal 

ordered lists for the machines that follow the first one. Instead, the depot location was determined by the user. No 

restrictions in terms of time windows was set in the first application shown in this paper, which means that the 

algorithm was left free to find out the best solution in terms of overall costs and makespan.    

4.2. Implementation 

The specific layout of piles chosen to test the approach shown in this paper is the one depicted on Fig. 3, that 

is the plan view of the BIM model containing the project to be executed. At this point, the BIM model was made 

of just 32 piles on three curved rows, numbered as shown in the figure. Although not fully automated, the quantity 

take-offs were extracted directly from the corresponding BIM model. These datasets included piles diameter, depth 

and volume. 

Productivity of drilling activities were estimated according to international literature [15], because it provides 

values averaged over the most common types of soil and machines that can be adopted. The other productivity 

values (i.e. rebar cage positioning and concrete pouring), direct and indirect costs were derived from databases 

and software tools for the estimation of unit costs of activities referred to the Italian context [16]. The productivity 

and costs values inserted in the algorithm are shown in Table 1, where it can be noticed that overheads are high as 

50 €/h and were attributed to the whole construction site. Additional indirect costs were accounted to the 

equipment. Denoting 𝑑̅ as the mean distance between nodes, the other parameters used to run the algorithm are: 

𝑛𝑎 = 𝑛, 𝜏0 = 1/(𝑛 ⋅ 𝑑̅), 𝑞0 = 0, 𝛽 = 2.5, 𝜌 = 0.5, 𝛾 = 15.
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Fig. 3. Layout of bored piles whose optimal planning was automated by means of the extended MACS-VRPTW. 

  Table 1. Productivity and costs values inserted as inputs in the MACS-VRPTW. 

Type of value Drilling 

machine 

Rebar 

cage 

Concrete 

pouring 

Productivity  10.00 m/h 0.16 t/h 2.86 m/h 

Direct costs 83.32 €/h 74.96 €/h 162.00 €/h 

Indirect costs 23.74 €/h 10.86 €/h 10.32 €/h 

Travelling speed 1.50 km/h 1.50 km/h 1.50 km/h 

Overheads (job-site) 50.00 €/h 

The MACS-VRPTW applied to this case study gave back the optimal schedule shown in Fig. 4-a, where the y-

axis reports the list of activities: no. 1 is drilling, no. 2 is rebar cage erection and no. 3 is concrete pouring; the x-

axis reports the elapsed time. Fig. 4-b depicts the number of iterations vs the value of the cost function related to 

the work execution. 

Fig. 4. Trend of the best cost (top) and final optimal plan for the execution of bored piles (bottom). 

4.3. Discussion 

As expected, the ordered lists of piles suggested for the execution of the three activities by the respective 

involved machines is not invariable. In fact, the sequence of piles worked within the first activity is different from 

the sequence of tasks worked within the second activity which is, in turn, different from the third one. In addition, 

the work performed by the three machines is interrupted by waiting times, that are necessary when a machine 

cannot perform its task until the previous one is not accomplished at the pile it has ordered as the next one on the 
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list. Indeed, waiting times increase indirect costs, but sometimes they can be accepted if the total travelled distance 

and related costs decrease. For example, the average waiting time for the second machine is equal to 0.06 h. Hence, 

this algorithm performs a trade-off between direct and indirect costs. The overall time to perform all the activities 

(i.e. makespan) is equal to 191.4 h. The total cost of the work performed is equal to 59,964 €. Finally, it must be 

noticed that this solution is the one that the algorithm worked out after 1000 iterations, as depicted on Fig. 4-b. 

Due to the nature of the algorithm, it could be capable of improving the suggested solution while increasing the 

number of iterations, until it stabilizes to the best one. However, when the optimization process must be quick, like 

in dynamic planning, this algorithm is always able to provide a sub-optimal solution within a pre-determined time 

limit, e.g. if we had stopped after 800 iterations, the solution provided at that point would have been slightly worse 

than the one suggested after 1000 iterations.   

5. Conclusions

An overall framework for automated planning of construction works was presented in this paper. It consists of 

several units: one unit is expected to retrieve information about building component materials, locations and 

geometry directly from the BIM model, without human intervention; one unit will manage information about the 

construction sites (e.g. locations of depots); another unit will implement the MACS-VRPTW algorithm to 

automatically generate the optimal schedule; the last unit will visualize the resulting schedule. The MACS-VRPTW 

algorithm developed in this paper performs optimization through the application of the stigmergic technique, which 

is based on ant colony search for the optimal solution. It belongs to the wider category of multi agent-based 

simulation, which looks very suitable for construction, where the overall behavior can be interpreted as the result 

of the interaction between several agents (i.e. crews), each one pursuing its own objective but obliged to interact 

with the remaining resources and with the context.  

In the algorithm presented in this paper, not only the overall makespan, but even the total costs of the 

construction site under analysis were optimized. The results show that after 1000 iterations the algorithm was able 

to optimize the overall cost function and to work out a solution that could limit the average waiting time of each 

crew. Also, it visualized the optimal schedule for the case study under analysis, according to the provided inputs. 

Among the main benefits, we cite the very efficient computational capabilities and the dynamicity of the algorithm, 

that can be run even in real-time during work execution, if revised planning is requested after deviations occurring 

from what expected.  

References 

[1] Vahid Faghihi, Ali Nejat, Kenneth F. Reinschmidt, Julian H. Kang, Automation in construction scheduling: a review of the literature, Int. 

J. Adv. Manuf. Technol. 81:9-12 (2015) 1845–1856. 

[2] M. Watkins, A. Mukheriee, N. Onder, K. Mattila, Using agent-based modelling to study construction labor productivity as an emergent 

property of individual and crew interactions, Journal of Construction Engineering and Management. 135:7 (2009) 657-667. 

[3] Ling Ma and Rafael Sacks, Agent-based simulation of construction workflows using a relational data model, In: Proceedings of the 24th

Annual Conference of the International Group for Lean Construction. Boston, MA, USA, (2009) 73-82. 

[4] A. Morad, Y. Beliveau, Knowledge-based planning system. J Constr Eng Manag. 117:1 (1991) 1-12. 

[5] Konda A., Coit D.W., Smith A.E., Multi-objective optimization using genetic algorithms: a tutorial, Reliab EngSyst Saf. 91:9 (2006) 992-

1007. 

[6] Bai Y., Zhao Y., Chen Y., Chen L., Designing domain work breakdown structure (DWBS) using neural networks, Proceedings of: 6 th

international symposium on neural networks, Wuhan, China. Springer Berlin Heidelberg (2009) p. 1146-1153. 

[7] Sabuncuoglu I., Scheduling with neural networks: a review of the literature and new research directions. Prod Plann Control: Manag Oper.

9:1 (1998) 2-12. 

[8] Kataoka M., Automated generation of construction plans from primitive geometries, J Constr Eng Manag 134:8 (2008) 592-600. 

[9] Lingguang Song, Neil N. Eldin, Adaptive real-time tracking and simulation if heavy construction operations for look-ahead scheduling, 

Automation in Construction 27 (2012): 32-39. 

[10] Hyunjoo Kim, Kyle Anderson, SangHyun Lee, John Hildret, Generating construction schedules through automatic data extraction using 

open BIM (building information modeling) technology, Automation in Construction 35 (2013) 285-295. 

[11] Ling Ma and Rafael Sacks, Agent-based simulation of construction workflows using a relational data model, in Proceedings of the 24th

Annual Conference of the International Group for Lean Construction, Boston, MA, USA (2009) p. 73-82. 

[12] Paul Valckenaers, Hendrik Van Brussels, Design for the unexpected, Elsevier, 2016, ISBN: 978-0-12-803662-4.

[13] Luca Maria Gambardella, Eric Taillard and Giovanni Agazzi, MACS-VRPTW: A multiple ant colony system for vehicle routing problems 

with time windows, In: D. Corne, M. Dorigo and F. Glover, New ideas in optimization, McGraw Hill, London, UK (1999) 63-76. 

[14] T.M. Zayed and D.W. Halpin, Pile Construction Productivity Assessment, Journal of Construction Engineering and Management, vol.

131:6 (2005) 705-714.

[15] Guild of Project Control – Bored Piling, 2009-02-22. Planning Planet, available online at: 

http://www.planningplanet.com/wiki/422511/bored-piling, last access on: 2018/02/09.

[16] Matteo Gieri, Analisi dei prezzi unitari in edilizia, Maggioli Editore (2011) ISBN: 978-88-387-6590-1. 

CCC 2018 Proceedings DOI 10.3311/CCC2018-097

746

http://www.planningplanet.com/wiki/422511/bored-piling



